Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".

In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)
Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.

In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')
Out[2]:
<matplotlib.image.AxesImage at 0x7f9e84bf1cf8>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.

In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))
Out[3]:
<matplotlib.image.AxesImage at 0x7f9e84ae7dd8>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU

In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)

In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    real_input = tf.placeholder(tf.float32, [None, image_width,image_height,image_channels], name="real_input")
    z_input = tf.placeholder(tf.float32, [None, z_dim], name="z_input")
    learning_rate = tf.placeholder(tf.float32, name="learning_rate")
    return real_input, z_input, learning_rate

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)
Tests Passed

LeakyRelu

Here we implement a leaky-rely function:

In [6]:
def leaky_relu(x, alpha=0.14, name='leaky_relu'):
    return tf.maximum(x, alpha * x, name=name)

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).

In [7]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    with tf.variable_scope("discriminator", reuse=reuse):
        x = tf.layers.conv2d(images, 64, 5, 2, "same", kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d())
        x = leaky_relu(x)
        # 16x16x64
        
        x = tf.layers.conv2d(x, 128, 5, 2, "same", kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d())
        x = tf.layers.batch_normalization(x, training=True)
        x = leaky_relu(x)
        # 8x8x128
        
        x = tf.layers.conv2d(x, 256, 5, 2, "same", kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d())
        x = tf.layers.batch_normalization(x, training=True)
        x = leaky_relu(x)
        # 4x4x256
        
        x = tf.reshape(x, [-1, 4*4*256])
        x = tf.layers.dense(x, 1)
#         x = tf.contrib.layers.dropout(x, keep_prob=0.9)
        
        logits = x
        out = tf.sigmoid(x)
        
        return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)
Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.

In [8]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    with tf.variable_scope('generator', reuse=(not is_train)):
        x = tf.layers.dense(z, 512*7*7)
        x = tf.reshape(x, [-1, 7, 7, 512])

        x = tf.layers.batch_normalization(x, training=is_train)
        x = leaky_relu(x)
        # 7x7x256

        x = tf.layers.conv2d_transpose(x, 256, 5, 2, "same")
        x = tf.layers.batch_normalization(x, training=is_train)
        x = tf.contrib.layers.dropout(x, keep_prob=0.5, is_training=is_train)
        x = leaky_relu(x)
        # 14x14x128

        x = tf.layers.conv2d_transpose(x, out_channel_dim, 5, 2, "same")
        # 28x28x3

        logits = x
        out = tf.tanh(logits)

        return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)
Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)
In [9]:
def model_loss(input_real, input_z, out_channel_dim, smooth=0.1):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    
    fake_imgs = generator(input_z, out_channel_dim)
    
    out_dt, logits_dt = discriminator(input_real, reuse=False) # discriminator True
    out_df, logits_df = discriminator(fake_imgs, reuse=True)   # discriminator Fake
    
    # Discriminator loss when images are real (note that we're applying label smoothing here)
    disc_loss_t = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_dt, labels=tf.ones_like(out_dt) * (1 - smooth))
    disc_loss_t = tf.reduce_mean(disc_loss_t)
    
    # Discriminator loss when images are being provided by generator
    disc_loss_f = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_df, labels=tf.zeros_like(out_df))
    disc_loss_f = tf.reduce_mean(disc_loss_f)
    
    # Generator loss
    generator_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_df, labels=tf.ones_like(out_df))
    generator_loss = tf.reduce_mean(generator_loss)
    
    discriminator_loss = disc_loss_t + disc_loss_f
    
    return discriminator_loss, generator_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)
Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).

In [10]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    all_vars = tf.trainable_variables()
    generator_vars = [var for var in all_vars if "generator" in var.name]
    discrimin_vars = [var for var in all_vars if "discriminator" in var.name]

    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        opt_gener = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=generator_vars)
        opt_discr = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=discrimin_vars)
    
    return opt_discr, opt_gener


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)
Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.

In [11]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.

In [12]:
tf.reset_default_graph()
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """    
    print("Starting training: \nEpochs: {} \nBatch Size: {} \nLearning Rate: {} \nBeta1: {} \nData Shape: {}"\
         .format(epoch_count, batch_size, learning_rate, beta1, data_shape))
    
    # data shape is: (batches, width, height, channels)     
    
    input_real, input_z, lr = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    discr_loss, gener_loss = model_loss(input_real, input_z, (3 if data_image_mode == "RGB" else 1) )
    train_discr, train_gener = model_opt(discr_loss, gener_loss, lr, beta1)
    
    it = 1 # current iteration
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for xs in get_batches(batch_size):
                
                # we want each "pixel value" to be between -1 and 1 however the row images' values are between -0.5 and 0.5
                # to fix this we simply multiply it by 2
                xs *= 2 
                
                # input "array" to generator
                z_img = np.random.uniform(-1, 1, size=(batch_size, z_dim))

                
                feed_dict = {input_real: xs, 
                             input_z: z_img, 
                             lr: learning_rate}
                _ = sess.run(train_discr, feed_dict)
                
                # I read in the forum that executing the optimizing step for the generator more times
                # than for the discriminator makes the discriminator train faster. Some comments said 
                # that the generator optimizer should be executed as much as 5 times more than the 
                # discriminator.
                for _ in range(4):
                    _ = sess.run(train_gener, feed_dict)
                
                
                if it % 100 == 0:
                    d_loss, g_loss = sess.run([discr_loss, gener_loss], feed_dict)
                    print("Epoch: {}/{}, Iteration: {}, Discriminator Loss: {:.3f}, Generator Loss: {:.3f}"\
                          .format(epoch_i, epochs, it, d_loss, g_loss))
                
#                 if it %  == 0:
                    show_generator_output(sess, 16, input_z, data_shape[3], data_image_mode)
                    
                it += 1
                

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.

In [13]:
batch_size = 64
z_dim = 100
learning_rate = 0.00016
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)
Starting training: 
Epochs: 2 
Batch Size: 64 
Learning Rate: 0.00016 
Beta1: 0.5 
Data Shape: (60000, 28, 28, 1)
Epoch: 0/2, Iteration: 100, Discriminator Loss: 1.567, Generator Loss: 0.893
Epoch: 0/2, Iteration: 200, Discriminator Loss: 1.856, Generator Loss: 1.223
Epoch: 0/2, Iteration: 300, Discriminator Loss: 1.627, Generator Loss: 0.743
Epoch: 0/2, Iteration: 400, Discriminator Loss: 1.747, Generator Loss: 0.347
Epoch: 0/2, Iteration: 500, Discriminator Loss: 1.451, Generator Loss: 0.637
Epoch: 0/2, Iteration: 600, Discriminator Loss: 1.477, Generator Loss: 0.694
Epoch: 0/2, Iteration: 700, Discriminator Loss: 1.559, Generator Loss: 0.820
Epoch: 0/2, Iteration: 800, Discriminator Loss: 1.495, Generator Loss: 0.543
Epoch: 0/2, Iteration: 900, Discriminator Loss: 1.580, Generator Loss: 0.479
Epoch: 1/2, Iteration: 1000, Discriminator Loss: 1.473, Generator Loss: 0.510
Epoch: 1/2, Iteration: 1100, Discriminator Loss: 1.378, Generator Loss: 0.631
Epoch: 1/2, Iteration: 1200, Discriminator Loss: 1.201, Generator Loss: 0.852
Epoch: 1/2, Iteration: 1300, Discriminator Loss: 1.202, Generator Loss: 0.674
Epoch: 1/2, Iteration: 1400, Discriminator Loss: 1.461, Generator Loss: 0.480
Epoch: 1/2, Iteration: 1500, Discriminator Loss: 0.977, Generator Loss: 0.980
Epoch: 1/2, Iteration: 1600, Discriminator Loss: 1.214, Generator Loss: 0.659
Epoch: 1/2, Iteration: 1700, Discriminator Loss: 0.906, Generator Loss: 1.062
Epoch: 1/2, Iteration: 1800, Discriminator Loss: 1.065, Generator Loss: 0.825

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.

In [14]:
batch_size = 64
z_dim = 100
learning_rate = 0.00016
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)
Starting training: 
Epochs: 1 
Batch Size: 64 
Learning Rate: 0.00016 
Beta1: 0.5 
Data Shape: (202599, 28, 28, 3)
Epoch: 0/1, Iteration: 100, Discriminator Loss: 1.584, Generator Loss: 0.522
Epoch: 0/1, Iteration: 200, Discriminator Loss: 1.880, Generator Loss: 0.406
Epoch: 0/1, Iteration: 300, Discriminator Loss: 1.628, Generator Loss: 0.622
Epoch: 0/1, Iteration: 400, Discriminator Loss: 1.665, Generator Loss: 0.570
Epoch: 0/1, Iteration: 500, Discriminator Loss: 1.524, Generator Loss: 0.732
Epoch: 0/1, Iteration: 600, Discriminator Loss: 1.569, Generator Loss: 0.634
Epoch: 0/1, Iteration: 700, Discriminator Loss: 1.479, Generator Loss: 0.702
Epoch: 0/1, Iteration: 800, Discriminator Loss: 1.507, Generator Loss: 0.636
Epoch: 0/1, Iteration: 900, Discriminator Loss: 1.498, Generator Loss: 0.680
Epoch: 0/1, Iteration: 1000, Discriminator Loss: 1.542, Generator Loss: 0.683
Epoch: 0/1, Iteration: 1100, Discriminator Loss: 1.541, Generator Loss: 0.678
Epoch: 0/1, Iteration: 1200, Discriminator Loss: 1.485, Generator Loss: 0.727
Epoch: 0/1, Iteration: 1300, Discriminator Loss: 1.485, Generator Loss: 0.690
Epoch: 0/1, Iteration: 1400, Discriminator Loss: 1.439, Generator Loss: 0.755
Epoch: 0/1, Iteration: 1500, Discriminator Loss: 1.441, Generator Loss: 0.737
Epoch: 0/1, Iteration: 1600, Discriminator Loss: 1.463, Generator Loss: 0.705
Epoch: 0/1, Iteration: 1700, Discriminator Loss: 1.485, Generator Loss: 0.675
Epoch: 0/1, Iteration: 1800, Discriminator Loss: 1.439, Generator Loss: 0.737
Epoch: 0/1, Iteration: 1900, Discriminator Loss: 1.459, Generator Loss: 0.692
Epoch: 0/1, Iteration: 2000, Discriminator Loss: 1.455, Generator Loss: 0.723
Epoch: 0/1, Iteration: 2100, Discriminator Loss: 1.421, Generator Loss: 0.748
Epoch: 0/1, Iteration: 2200, Discriminator Loss: 1.430, Generator Loss: 0.722
Epoch: 0/1, Iteration: 2300, Discriminator Loss: 1.458, Generator Loss: 0.728
Epoch: 0/1, Iteration: 2400, Discriminator Loss: 1.435, Generator Loss: 0.741
Epoch: 0/1, Iteration: 2500, Discriminator Loss: 1.437, Generator Loss: 0.719
Epoch: 0/1, Iteration: 2600, Discriminator Loss: 1.434, Generator Loss: 0.715
Epoch: 0/1, Iteration: 2700, Discriminator Loss: 1.451, Generator Loss: 0.706
Epoch: 0/1, Iteration: 2800, Discriminator Loss: 1.423, Generator Loss: 0.739
Epoch: 0/1, Iteration: 2900, Discriminator Loss: 1.412, Generator Loss: 0.776
Epoch: 0/1, Iteration: 3000, Discriminator Loss: 1.438, Generator Loss: 0.739
Epoch: 0/1, Iteration: 3100, Discriminator Loss: 1.431, Generator Loss: 0.722

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.